Posts tagged ‘hubble’

June 18th, 2012

A Fourth Exception to the BVG Theorem

by Max Andrews

The Borde-Vilenkin-Guth Theorem states that any universe, which has, on average, a rate of expansion greater 1 that system had to have a finite beginning. This would apply in any multiverse scenario as well.  There are four exceptions to the theorem.*

Time reversal at singularity

Example: Aguirre-Gratton

(Regarding BVG): The Intuitive reason why de Sitter inflation cannot be past eternal is that in the full de Sitter space, exponential expansion is preceded by exponential contraction.  Such a contracting phase is not part of standard inflationary models, and does not appear to be consistent with the physics of inflation.  If thermalized regions were able to form all the way to past infinity in the contracting spacetime, the whole universe would have been thermalized before inflationary expansion could begin.  In our analysis we will exclude the possibility of such a contracting phase by considering spacetimes for which the past region obeys an averaged expansion condition, by which we mean that the average expansion rate in the past is greater than zero: Havg > 0. (Borde, Guth, and Vilenkin 2003, p1)

June 15th, 2012

A Third Exception to the BVG Theorem

by Max Andrews

The Borde-Vilenkin-Guth Theorem states that any universe, which has, on average, a rate of expansion greater 1 that system had to have a finite beginning. This would apply in any multiverse scenario as well.  There are four exceptions to the theorem.*

For a greater context please see the first exception to the BVG theorem, which is Initial Contraction (Havg<0).

The third exception: Infinite Cyclicity (Havg=0)

Example: Baum-Frampton “phantom bounce”

These models suggest that the universe goes through a cycle in which it grows from zero (or non-zero) size to a maximum and then contracts back to its starting condition.  The verage expansion rate would be a pure zero.

June 14th, 2012

A Second Exception to the BVG Theorem

by Max Andrews

The Borde-Vilenkin-Guth Theorem states that any universe, which has, on average, a rate of expansion greater 1 that system had to have a finite beginning. This would apply in any multiverse scenario as well.  There are four exceptions to the theorem.*

For a greater context please see the first exception to the BVG theorem, which is Initial Contraction (Havg<0).

The second exception: Asymptotically static (Havg=O)

Example: asymptotically static universe is an emergent model class.

An asymptotically static space is one in which the average expansion rate of the universe over its history is equal to zero, since the expansion rate of the universe “at” infinity is zero.  The problem is that we observe expansion today and if at any moment there is expansion then the Havg must be greater than 0.

August 10th, 2011

Einstein, The Big Bang, and Natural Theology

by Max Andrews

Einstein’s General Theory of Relativity (GTR) had predicted that the universe was either expanding or contracting.  Einstein found the notion of a beginning to the universe so distasteful that he introduced a “fudge factor” to his field equation to keep a Steady State universe, an eternal equilibrium.[1]  Einstein introduced a term called the cosmological constant.  The cosmological constant was a force so weak, which factored into the geometric curvature of space, that it would make no difference on an eternal universe.

In the 1920’s Edwin Hubble was studying the Andromeda nebula.  At least since the time of Kant scientists wondered what these distant enormous objects were (galaxies).  Kant conjectured that they might be island universes in their own right.[2]  With further study, Hubble noticed that these galaxies had a red shift; the galaxies were appearing redder than they should have and Hubble postulated that these galaxies were moving away from one another.  What was being observed was the same thing that the Doppler effect has on sound.  The trajectory of an object has an effect on the wavelength of the sound, or in this case, light.

As a result of Hubble’s discovery and Einstein’s own equations the Russian mathematician Alexander Friedman and the Belgian priest and physicist Georges Édouard Lemaître suggested that the universe had a finite past and was not static and eternal.  There was now a problem with the cosmological constant; it cannot simply be deleted from Einstein’s equations. The cosmological constant could balance the equation from describing the geometric curvature (left hand side of the equation) to describing the energy momentum (right hand side of the equation).   If this expansion is extrapolated the equations of motion then (and even now) can only go but so far—until the universe comes to a singularity. With reluctance Einstein conceded the steady state model in the late 1920’s, though many scientists would not accept the implications of an expanding universe (its finitude).  One critic, Fred Hoyle, dubbed such an event the “Big Bang” in mockery and the name stuck.[3]

Einstein’s GTR [and aspects of STR] has made incredible contributions to natural theology.[4]  Given the fixed speed of light, that nothing can travel faster than light, and the billions of light-years separation between the earth and other stars, it follows that the universe is billions of years old.[5]  This has created a problem for young-earth creationists.[6] Current estimations for the age of the universe have been set at 13.73±2 billion years old.  Young-earth creationists have adopted three main approaches:  (1) embrace a fictitious history of the universe in the spirit of Philip Gosse’s 1857 work Omphalos; (2) view the speed of light as having decayed over time; and/or (3) interpret Einstein’s GTR so that during an “ordinary day as measured on earth, billions of years worth of physical processes take place in the distant cosmos.”[7]

Regarding a fictitious history of the universe, the argument states that all present light, which appears to be billions of light years away, was created in transit with an appearance of age.  So, when supernovae exploding in a galaxy millions or billions of light years away, the young-earth creationist [advocate of a fictitious history] must adopt the approach that no supernovae ever exploded.[8]  Einstein and the scientific theologian’s epistemic method reject such an interpretation.  Einstein’s method of inquiry based the natural order as having an ontological status of genuine reality and the discoveries are made a posteriori; no such method of inquiry is tenable under a fictitious history.  Einstein’s epistemology has influenced Big Bang theists and scientific theologians regarding GTR and the objectivity of the natural order.  It appears, objectively, that the universe really is billions of years old.

The second argument was a denial that the speed of light has been a constant [approximately] 300,000 km/s.  As previously discussed, Einstein’s E=mc2 states that energy is proportional to the mass of an object multiplied by the speed of light squared.  If c decays then that would imply that there has been a change in the quantity of energy in the universe.  This creates a problem for thermodynamics.  Thermodynamics would not be the only problem; many other constants would need to change as well to preserve the stability of a life-permitting cosmos such as Planck’s constant h (h-bar).  Suddenly the objection is not only with c because that would in turn change all of physics.[9]  All of this would be done to circumvent an old universe suggested by a constant speed of light.[10]  Before Einstein’s relativity theories, this would not have been a problem for the young-earth creationist.

The third foremost-misconstrued aspect of Einstein’s equations by natural theologians has been to misinterpret GTR and time dilation.  The mathematics of this theory shows that while God makes the universe in six days in the earth’s reference frame (“Earth Standard Time”), the light has ample time in the extra-terrestrial reference frame to travel the required distances.[11]  The problem with this theory is that there are mathematical errors in its use of Einstein’s GTR.

One misunderstanding is the theory’s use of the Cosmological Principle.  It wrongly assumes that the long-time-scale implications of Big Bang cosmology are crucially dependent on the global validity of the principle and that the relaxation of this assumption, through the introduction of a boundary to the matter of the universe, produces dramatic differences in the gravitational properties of the universe.[12]  A second misunderstanding is the nature of time.  The theory wrongly affirms that the physical clock synchronization properties, which occur in the standard Big Bang model are due to the boundary conditions implied by the Cosmological Principle and that modification of these boundary conditions can change the way physical clocks behave.  Clocks in either our bounded or unbounded universe will behave exactly the same way whether on earth or at a distant galaxy provided there are identical interior matter distributions.[13] The third misunderstanding to be discussed is how GTR relates to event horizons (the point where escaping a mass’s gravity becomes impossible).  The theory wrongly affirms that observers who pass through event horizons observe dramatic changes in the rate of time passage in distant parts of the universe when it is the case that no such changes occur.[14]  Einstein’s impact on young-earth creationism has been profound and, arguably, has overthrown the tenability of young-earth creationism altogether.[15]

Einstein’s impact on natural theology has not been completely negative, as in the case for young-earth creationists, but for scientific theologians [and old-earth creationists] he has been a catalyst for epistemic and religious advances.  It is important to understand that as a GTR-based theory, the model does not describe the expansion of the material content of the universe into preexisting, Newtonian space, but rather the expansion of space itself.  The standard Big Bang model, as the Friedman-Lemaître model came to be called, thus described a universe that is not eternal in the past, but which came into being a g finite time ago.  Moreover, the origin it posits is an absolute origin ex nihilo.[16]  Christian theologians and philosophers already had arguments for a beginning of the universe based on necessity, contingency, and the concept of an actual infinite, but Einstein’s equations, which led the Standard Model, gave a mathematical and physical description of the universe that supported the Christian doctrine of creation.  The metaphysical concept of creatio ex nihilo now had empirical evidence.

In the 1960’s there was a dramatic increase in a series of dialogue on the relationship between science and religion.[17]  Natural theology [by the tasks of primarily scientists and philosophers] has sought to demonstrate that God is a necessary element in any comprehensive explanation of the universe is a long tradition, one that the Darwinian crusade sought to eliminate.  It might be legitimate to say that this renewed relationship between science and religion is a return to normal if Einstein was right when he said that “science without religion is lame. Religion without science is blind.”[18]


            [1] Guillermo Gonzalez and Jay Wesley Richards. The Privileged Planet: How Our Place in the Cosmos Is Designed for Discovery (Washington, DC: Regnery, 2004), 171.

            [2] Gonzalez and Richards, 169.

            [3] Gonzalez and Richards, 171.

            [4] Natural theology supposes that the belief in God must rest upon an evidential basis.  Belief in God is thus not a properly basic belief.  Through the development of Einstein’s work, natural theology was undergoing barrage of attack from theologians such as Karl Barth.  Barth’s polemic against natural theology can be seen as a principled attempt to safeguard the integrity of divine revelation against human attempts to construct their own notions of God, or undermine the necessity of revelation. Alister E. McGrath, The Science of God: An Introduction to Scientific Theology (Grand Rapids, MI: Eerdmans, 2004), 81-82.

            [5] It is worth noting that space itself can travel faster than the speed of light, Einstein’s STR permits this.  It is expected that space begin to exceed this cosmic speed limit relatively soon.  William Dembski, The End of Christianity (Nashville, TN: B&H, 2009), 65.

            [6] Young-earth creationists have an epistemic method that begins with the Bible and shapes the rest of nature and science according to that specific interpretation rendered.  Their conclusion is that the six days of creation are a literal 24-hour day period and the universe is roughly six to ten thousand years old.

            [7] These are the three primary approaches as they relate to Einstein’s work.  Young-earth creationists have certainly developed scores of other arguments, but these are the most relevant and most cited.  D. Russell Humphreys, Starlight and Time: Solving the Puzzle of Distant Starlight in a Young Universe (Green Forest, AR: Master, 1994), 37 quoted in Dembski, 65.

            [8] Dembski, 66-67.

            [9] Dembski, 67-68.

            [10] There are models consistent with a 13.7 billion year old universe that suggests a change in the speed of light.  Recent varying-speed-of-light (VSL) theories have been suggested as a possible alternative to cosmic inflation for solving the horizon problem, the problem of causality over long distances in initial inflation, suggesting that the speed of light was once much greater.  This is not a popular view since it is difficult to construct explicit models permitting such a suitable variation.  Other constants have been suggested to change (a theory of varying fundamental constants) in part due to superstring theory and eternal inflation.  Even so with these theories and cosmic models, there are still more-fundamental (in contrast to varying) constants in the parent universes (preceding universes in the multiverse models).  Even with a theory of varying fundamental constants Einstein’s equations [of STR] still stand in such models. Andrew R. Liddle, and Jon Loveday, The Oxford Companion to Cosmology (Oxford:  Oxford University Press, 2009), 316.

            [11] Humphreys, 13.

            [12] Samuel R. Conner and Don N. Page, “Starlight and time is the Big Bang,” CEN Technical Journal 12 no. 2 (1998): 174.

            [13] Ibid.

            [14] Ibid.

            [15] In Conner and Page’s response to young-earth creationism’s cosmology they assume five mathematical and methodological points.  (1) GTR is an accurate description of gravity.  (2) Gravity is the most important force acting over cosmologically large distances, so that the conventional application of GTR to cosmology is valid.  (3) The fundamental parameters of nature, such as the gravitational constant G and the speed of light c, are invariant over the observable history of the universe.  (4) The visible region of the universe is approximately homogenous and isotropic on large distance scales.  Lastly, (5) the events which we witness by the light of distant galaxies and quasi-stellar objects are real events and not appearances impressed onto the universe by the intention of the Creator.  Ibid, 175.  The first two assumptions directly reinforce Einstein’s GTR equations.  The third assumption, as previously discussed, relates to Einstein’s STR equations.  The fourth assumption relates to the balancing of Einstein’s field equations and its adjustment after Hubble’s discovery of expansion.  The final assumption relates to Einstein’s epistemic method of reality having real ontological value in an epistemic inquiry.

            [16] Paul Copan and William Lane Craig, Creation Out of Nothing: A Biblical, Philosophical, and Scientific Exploration (Leicester, England: Apollos, 2004), 222-223.

            [17] These efforts were predominately made by scientists and not theologians.  Such landmark works were Ian Barbour’s Issues in Science and Religion (1966) and later Paul Davies’ God and the New Physics (1983). Rodney Stark, For the Glory of God: How Monotheism Led to Reformations, Science, Witch-Hunts, and the End of Slavery (Princeton, NJ: Princeton University Press, 2003), 197.

            [18] Albert Einstein, Ideas and Opinions, Trans. and rev. Sonja Bargmann (New York: Three Rivers, 1982), 46. Stark, 197.