Posts tagged ‘Heisenberg’

October 18th, 2012

The Epistemology Directory

by Max Andrews
Below is a collection of all my blog posts specifically related to epistemology.
  1. My Evidentialist Epistemology
  2. Onto-Relationships and Epistemology
  3. Why Plantinga’s Warrant Cannot Circumvent the Gettier Problem
  4. A General Rule for Gettier Cases
  5. Empiricism and Being in the Right Phenomenological Frame of Mind
  6. Meet Philosopher Linda Zagzebski
  7. The Connection Between Phenomenology and Existentialism
  8. A Response to Alvin Plantinga’s “The Reformed Objection to Natural Theology”
  9. Alex Rosenberg on Whether Philosophy Emerges from Science
  10. Steven Wykstra’s “Toward a Sensible Evidentialism: ‘On the Notion of Needing Evidence.’”
  11. Immanuel Kant’s Categorical Epistemology
  12. New Paper: “Epistemological Scientific Realism and the Onto-Relationship of Inferentially Justified and Non-Inferentially Justified Beliefs”
    read more »

September 7th, 2012

“The Heisenberg Uncertainty Principle was Never Quite Right”

by Max Andrews

Pioneering experiments have cast doubt on a founding idea of the branch of physics called quantum mechanics.

The Heisenberg uncertainty principle is in part an embodiment of the idea that in the quantum world, the mere act of observing an event changes it.

But the idea had never been put to the test, and a team writing in Physical Review Letters says “weak measurements” prove the rule was never quite right.

That could play havoc with “uncrackable codes” of quantum cryptography.

Quantum mechanics has since its very inception raised a great many philosophical and metaphysical debates about the nature of nature itself.

The experiment requires preparing pairs of “entangled” photons, the particles from which light is made (BBC)

October 13th, 2011

Is Heisenberg a Defeater for an Evidentialist Epistemology?

by Max Andrews

(For further context on my epistemology see Einstein’s Impact on the Epistemic Method.  I would consider myself a moderate evidentialist.)

Scientific theology takes Einstein’s knowing and being and his understanding of reality as a whole and applies this method of theology in Christian theology.  If the world is indeed the creation of God, then there is an ontological ground for a theological engagement with the natural sciences.  It is not an arbitrary engagement, which regresses back to Newtonian engagement, but it is a natural dialogue, grounded in the fundamental belief that the God about whom Christian theology speaks is the same God who created the world that the natural sciences investigate.[1]

A major problem that presses my theory of knowledge is the Heisenberg Principle.  This principle states that an observer changes the current state of affairs being observed.  For instance, if I am measuring the velocity of a particle I cannot know the position of the particle and vise versa.  This is called uncertainty.  How this comes into the epistemic process is whether or not this principle is epistemic or ontic.  This uncertainty creates an epistemic limit.

If this principle is epistemic then what relationship does the nature of reality have on our epistemic faculty?  Heisenberg himself believed that this uncertainty was not merely epistemic but it was ontic. Back to the example of velocity and position, if Heisenberg’s ontic uncertainty is true then if an object that is not in an eigenstate[2] of position then the object does not have a position.  Position then becomes a potential property.  When the observer measures the position it is then actualized.[3]

If this principle is ontic then this may potentially be a defeater for my position.  By way of realism, there is a certain element of reality that truly is uncertain.  Causation is even worse than what Hume told us.  That is still not to say that causation does not occur, it must, but this ontic uncertainty may affect more than just the quantum world.  If all of reality is composed of particles then there is a certain extent to which properties of particle can be extrapolated to a set aggregate of particles.  It’s easy to see how this can affect evidence and meeting sufficiency for belief.  I do not believe that ontic uncertainty makes reality unknowable since, intuitively, there are some propositions that we do know to be true such as the reality and existence of the external world.  So, even if it were the case that there is an element to ontic uncertainty it would not affect my epistemic theory in a capacity that would render it void and untenable.  There may be minor nuances to my theory that would render this theory questionable but given epistemic charity or probability one may still be justified in believing any proposition that is onticly uncertain as true as long as it meets the criteria for sufficiency.


            [1] Both the natural sciences and Christian theology are to engage with the nature of reality—not deciding this in advance, but exploring and establishing it through a process of discovery and encounter.  Alister E. McGrath, The Science of God: An Introduction to Scientific Theology (Grand Rapids, MI: Eerdmans, 2004),  21-22.

            [2] An eigenstate is a state corresponding to a fixed value of a physical variable.

            [3] Jonathan Allday, Quantum Reality:  Theory and Philosophy (Boca Raton, FL: CRC Press, 2009), 250-251.

August 11th, 2011

Einstein on Free Will

by Max Andrews

After the First World War Einstein made contributions to the development of quantum theory, including Bose-Einstein statistics and the basics of stimulated emission of radiation from atoms (which was later used to develop lasers).  He gave the nod of approval that led to the rapid acceptance of Louis de Broglie’s ideas about matter waves but he never came to terms with the Copenhagen interpretation of quantum mechanics.[1] The Copenhagen has become the more popular and standard interpretation.[2]

According to the Heisenberg Principle, the moment at which a measurement takes place is the moment at which the randomness lying at the heart of quantum reality expresses itself.[3]  Up to that point, everything is fine.  Amplitudes change in a completely predictable, and more importantly, calculable way.  The observer changes the state of what is being observed.  Outcomes can be predicted according to governing probabilities, but the actual outcome cannot be known in advance.[4]

This was something Einstein could not live with.  Einstein, as a determinist, felt that the world is a structured and rigid web where effects follows cause and all things should be predictable, given the right information.  Einstein acknowledged that quantum theory works but he did not like the philosophy behind it.  If whether or not, for example, Niels Bohr, Einstein’s quantum physics counterpart, were to throw a book across the room Einstein would be able to predict the outcome of Bohr’s “choice.” Einstein would of course say that choice is the wrong word to use; rather, the brain is a complex machine with cogs whirring round to produce a predictable action.  The basis of Einstein’s view was a philosophical conviction that the world did not include random events:  an objection summed up in Einstein’s widely quoted saying, “God does not play dice.”[5]  Bohr is reported to have responded to Einstein with the witty reply, “Don’t tell God what to do.”

Strict [or hard] determinism may be the only way to avoid the implication from quantum mechanics and experiments such as the delayed choice experiment.[6]  This experiment suggests that quantum communications occur instantaneously across any distance, or even travel backwards in time.[7]  The determinist is not yet defeated, quantum mechanics comes with a state of collapse and that seems to be linked to measurement.  Whatever measurements are, they are very specific situations and probably linked to what happens when a particle bumps into a measuring device.[8]

Einstein played a prominent role in the early development of quantum mechanics, particular in his philosophical approach to it.  How one interprets quantum mechanics will shape the answer to the question of determinism and free will.  Empirical testing does not seem to be enough to provide a satisfactory answer; rather, it how the data is interpreted.  Einstein’s approach to the rejection of genuine random events has been an influence of the contemporary debate.  It has been argued that Einstein’s determinism is correct, but it may be a mistake for him to base it on random events.  Randomness is not sufficient for determinism to be true; a lack of causality would be sufficient.  Even with the delayed choice experiment there seems to be a lack of causality, if anything it would be backwards causality.  The free will proponent must be careful not to appeal to any ignorance for a lack of explanation of such quantum events.  Einstein’s reason for determinism (randomness) does nothing to advance his case.  If anything, quantum experiments such as the delayed choice experiment only show that there is randomness in the world, not that there is purposeful, free agency.  All quantum mechanics entails is that there are random events in the brain (or whatever) that yield unpredictable behavior, which the agent is not responsible.[9]  Thus, it seems to be the case that Einstein’s philosophy of determinism has persevered.[10]


[1] Kenneth William Ford, The Quantum World: Quantum Physics for Everyone (Cambridge, MA: Harvard University Press, 2004), 117.

[2] At this time there are at least ten regularly cited interpretations of quantum physics varying in interpretation of wave collapse, determinacy/indeterminacy, superpositions, and Schrödinger’s equations.

[3]  The equation: (change in x multiplied by the change in px is greater than or equal to half of Planck’s constant). For a given state, the smaller the range of probable x values involved in a position expansion, the larger the range of probable px values involved in a momentum expansion, and vice versa.  The key to the expression is the greater than or equal to because it places a limit on how precise the two measurements can be.  The principle is relating and for the same state ( signifies change, h, h-bar, is the Planck constant).  Heisenberg’s target was causality. The Copenhagen interpretation adopted this principle.  Jonathan Allday, Quantum Reality: Theory and Philosophy (Boca Raton, FL: CRC Press, 2009), 247-248.

[4] Jonathan Allday, Quantum Reality: Theory and Philosophy (Boca Raton, FL: CRC Press, 2009), 100-101.

[5] Allday, 101.

[6] If photons are fired through the experiment one at a time (firing photons at a wall with two holes and a photon detector on the other side of the holes), they will build up an interference patter on the other side, as if they had gone through both holes at once and interfered with themselves.  If the experiment is set up so that detectors monitor which hole the photo goes through, the photon is indeed observed to be going through only one hole, and there is no interference pattern.  If a detector is set up not at the holes but intermediate between the two holes and the back wall detector screen then it may be possible to see which route a particular photon took after it had passed the two holes before it arrived at the screen.  Quantum theory says that if we choose to turn this new detector off and not look at the photons, they will form an interference pattern.  But if we look at the photons to see which hole they went through, even if we look after they have gone through the hole, there will be no interference pattern.  The delayed choice comes into the story because we can make the decision whether or not too look at the photon after the photon has already passed through the hole[s].  The decision made seems to determine how the photon behaved at the time it was passing though the hole a tiny fraction of a second in the past.  It seems as though the photons have some precognition about how the set-up of the experiment will be before it sets out on its journey.  This has also provided credence to the metaphysical concept of backwards causation.  John R. Gribbin, Mary Gribbin, and Jonathan Gribbin (Q Is for Quantum: Particle Physics from A-Z. London: Weidenfeld & Nicolson, 1998), 102-103.

[7] This is most notably accepted by the transactional interpretation of quantum mechanics. Gribbin, 104.

[8] Allday, 102.

[9] Predictability may be equivalent to randomness, not a lack of causality.  Louis Pojman, Philosophy: The Pursuit of Wisdom (Boston, MA: Wadsworth, 2006), 229-230.

[10] Recalling Einstein’s epistemic method, he based all of his philosophy and work on the ontological status of the universe.  He did not seem to indicate an immateriality to the mind.  Einstein’s influence is limited only to the physical aspect for the substance dualist.  Here is where the substance dualist and the scientific theologian must resume the dialogue.