Posts tagged ‘Albert Einstein’

June 7th, 2012

Theology Thursday: Thomas F. Torrance Part 1

by Max Andrews

Theologian: Thomas F. Torrance (1913 – 2007) – the development of scientific theology

More about his theology:  Thomas Torrance was a professor of Christian Dogmatics at the University of Edinburgh in Scotland.  He was heavily influenced by Karl Barth and contemporary science.  He translated Barth’s Dogmatics from German to English. (Which is quite voluminous–thirteen volumes, six million words).  He was also a recipient of the Templeton Prize for the advancement of religion.

Torrance was the primary contributor to the development of scientific theology.  He argued that the universe of space and time is the means by which God has revealed himself to man, as it comes to view under human inquiry to develop and formulate knowledge of God.  This was the development of an exegesis of nature. 

Lorenzo Valla (1406-1457) developed the interrogative (interrogatio) rather than the problematic (quaestio) form of inquiry.  Valla’s mode of inquiry was one in which questions yield results that are entirely new, giving rise to knowledge that cannot be derived by an inferential process from what was already known.  This method was similar to the works of Stoic lawyers and educators like Cicero and Quintilian; that is, questioning witnesses, investigating documents and states of affairs without any prior conception of what the truth might be.  Valla transitioned from not only using this method for historical knowledge but also applied it as “logic for scientific discovery.”[1] Valla’s logic for scientific discovery was the art of finding out things rather than merely the art of drawing distinctions and connecting them together.  He called for an active inquiry (activa inquisitio).  John Calvin (1509-1564) applied this method to the interpretation of Scripture and thus became the father of modern biblical exegesis and interpretation.[2]  Francis Bacon (1561-1626) applied it to the interpretation of the books of nature, as well as to the books of God, and became the father of modern empirical science.[3]

May 29th, 2012

The Postulates of Special Relativity

by Max Andrews

Albert Einstein felt the strong need to affirm Galilean relativity, which applied only to mechanical laws, that he decided to extend it to include electromagnetic and optical laws.  He adopted the principle that no physical experiment (mechanical, optical, electromagnetic, or any physical law whatsoever) can distinguish between a state of absolute rest and a state of constant velocity.  With the help of the German mathematician Herman Minkowski (who taught us to think in terms of spacetime rather than space and time individually.  Einstein introduced a new principle of relativity and revolutionized mechanics.

There are two postulates of special relativity but the consequences are profound.

  1. Postulate 1 (Principle of Relativity): The laws of nature are the same in all inertial frames.
  2. Postulate 2 (Constancy of the Velocity of Light): The speed of light in empty space is an absolute constant of nature and is independent of the motion of the emitting body.
    read more »

May 17th, 2012

Theology Thursday: Alister McGrath

by Max Andrews

Theologian: Alister McGrath (1953 – present)

More about his theology:  McGrath is considered one of the leading developers and proponents of scientific theology. There is a long tradition within Christian theology of drawing on intellectual resources outside the Christian tradition as a means of developing a theological vision.  This approach is often referred to by the Latin phrase ancilla theologiae (a ‘handmaid of theology’).  The evolution of thought and method from Newton to Einstein vitalized scientific theology.  Scientific theology argues that the working methods and assumptions of the natural sciences represent the best—or the natural—dialogue partner for Christian theology.[1]

May 15th, 2012

How Einstein got to E=mc^2

by Max Andrews

In 1865 James Clerk Maxwell had unified electricity and magnetism by developing his equations of electromagnetism. It was soon realized that these equations supported wave-like solutions in a region free of electrical charges or currents, otherwise known as vacuums.  Later experiments identified light as having electromagnetic properties and Maxwell’s equations predicted that light waves should propagate at a finite speed c (about 300,000 km/s).  With his Newtonian ideas of absolute space and time firmly entrenched, most physicists thought that this speed was correct only in one special frame, absolute rest, and it was thought that electromagnetic waves were supported by an unseen medium called the ether, which is at rest in this frame.

Let an object in a rest frame simultaneously emit two light waves with the same energy E/2 in opposite directions (now having equal but opposite momenta), the object remains at rest, but its energy decreases by E.  By the Doppler effect, in another frame, which is moving at the velocity v in one of those directions, the object will appear to lose energy equal to

May 9th, 2012

Word of the Week Wednesday: Mathematical Invariance

by Max Andrews

Word of the Week: Mathematical Invariance

Definition:  In Einstein’s use of the word, mathematical invariance established a genuine ontology in which the subject grips with objective structures and intrinsic intelligibility of the universe.

More about the word:  Throughout Einstein’s work, the mechanistic universe proved unsatisfactory.  This was made evident after the discovery of the electromagnetic field and the failure of Newtonian physics to account for it in mechanistic concepts.  Then came the discovery of four-dimensional geometry and with it the realization that the geometrical structures of Newtonian physics could not be detached from changes in space and time with which field theory operated. 

May 1st, 2012

A Failure of Creationist Cosmology

by Max Andrews

Einstein’s GTR [and aspects of STR] has made incredible contributions to natural theology.[1]  Given the fixed speed of light, that nothing can travel faster than light, and the billions of light-years separation between the earth and other stars, it follows that the universe is billions of years old.[2]  This has created a problem for young-earth creationists.[3] Current estimations for the age of the universe have been set at 13.73±2 billion years old.  Young-earth creationists have adopted three main approaches:  (1) embrace a fictitious history of the universe in the spirit of Philip Gosse’s 1857 work Omphalos; (2) view the speed of light as having decayed over time; and/or (3) interpret Einstein’s GTR so that during an “ordinary day as measured on earth, billions of years worth of physical processes take place in the distant cosmos.”[4]

May 1st, 2012

Scientific Theology and Evidentialism

by Max Andrews

I am approaching the world as a realist. (For a background of my epistemology please see: My Evidentialist Epistemology).  What I mean by this is that the external reality is how it appears to be to an observer making an epistemic inquiry, the measurements from science accurately depicts reality.  This is in contrast to instrumentalism, which suggests that our inquiry of the world, scientifically, do not accurately depict reality but as useful fictions.  An instrumentalist is more concerned about data fitting theories and predictions than with an accurate depiction of reality.

For the realist-evidentialist, the ontology of the world determines one’s epistemology.  They congruently correspond.  It is important to note the order of entailment.  Antecedently, reality determines our epistemology.  It would be illicit to reverse the term order and as Roy Bhaskar notes, it would be the epistemic fallacy.  I am not advocating a naïve realism where reality acts on the human mind without personal inquiry nor am I advocating postmodern anti-realism where one can construct whatever type of reality is desired.  I am advocating a form of critical realism.

Lorenzo Valla’s (1406-1457) interrogative (interrogatio) form of inquiry.  Valla’s mode of inquiry yield results that are entirely new, giving rise to knowledge that cannot be derived by an inferential process from what was already known.  Valla transitioned from not only using this method for historical knowledge but also applied it as “logic for scientific discovery.”[1] 

October 13th, 2011

Is Heisenberg a Defeater for an Evidentialist Epistemology?

by Max Andrews

(For further context on my epistemology see Einstein’s Impact on the Epistemic Method.  I would consider myself a moderate evidentialist.)

Scientific theology takes Einstein’s knowing and being and his understanding of reality as a whole and applies this method of theology in Christian theology.  If the world is indeed the creation of God, then there is an ontological ground for a theological engagement with the natural sciences.  It is not an arbitrary engagement, which regresses back to Newtonian engagement, but it is a natural dialogue, grounded in the fundamental belief that the God about whom Christian theology speaks is the same God who created the world that the natural sciences investigate.[1]

A major problem that presses my theory of knowledge is the Heisenberg Principle.  This principle states that an observer changes the current state of affairs being observed.  For instance, if I am measuring the velocity of a particle I cannot know the position of the particle and vise versa.  This is called uncertainty.  How this comes into the epistemic process is whether or not this principle is epistemic or ontic.  This uncertainty creates an epistemic limit.

If this principle is epistemic then what relationship does the nature of reality have on our epistemic faculty?  Heisenberg himself believed that this uncertainty was not merely epistemic but it was ontic. Back to the example of velocity and position, if Heisenberg’s ontic uncertainty is true then if an object that is not in an eigenstate[2] of position then the object does not have a position.  Position then becomes a potential property.  When the observer measures the position it is then actualized.[3]

If this principle is ontic then this may potentially be a defeater for my position.  By way of realism, there is a certain element of reality that truly is uncertain.  Causation is even worse than what Hume told us.  That is still not to say that causation does not occur, it must, but this ontic uncertainty may affect more than just the quantum world.  If all of reality is composed of particles then there is a certain extent to which properties of particle can be extrapolated to a set aggregate of particles.  It’s easy to see how this can affect evidence and meeting sufficiency for belief.  I do not believe that ontic uncertainty makes reality unknowable since, intuitively, there are some propositions that we do know to be true such as the reality and existence of the external world.  So, even if it were the case that there is an element to ontic uncertainty it would not affect my epistemic theory in a capacity that would render it void and untenable.  There may be minor nuances to my theory that would render this theory questionable but given epistemic charity or probability one may still be justified in believing any proposition that is onticly uncertain as true as long as it meets the criteria for sufficiency.


            [1] Both the natural sciences and Christian theology are to engage with the nature of reality—not deciding this in advance, but exploring and establishing it through a process of discovery and encounter.  Alister E. McGrath, The Science of God: An Introduction to Scientific Theology (Grand Rapids, MI: Eerdmans, 2004),  21-22.

            [2] An eigenstate is a state corresponding to a fixed value of a physical variable.

            [3] Jonathan Allday, Quantum Reality:  Theory and Philosophy (Boca Raton, FL: CRC Press, 2009), 250-251.

August 11th, 2011

Einstein on Free Will

by Max Andrews

After the First World War Einstein made contributions to the development of quantum theory, including Bose-Einstein statistics and the basics of stimulated emission of radiation from atoms (which was later used to develop lasers).  He gave the nod of approval that led to the rapid acceptance of Louis de Broglie’s ideas about matter waves but he never came to terms with the Copenhagen interpretation of quantum mechanics.[1] The Copenhagen has become the more popular and standard interpretation.[2]

According to the Heisenberg Principle, the moment at which a measurement takes place is the moment at which the randomness lying at the heart of quantum reality expresses itself.[3]  Up to that point, everything is fine.  Amplitudes change in a completely predictable, and more importantly, calculable way.  The observer changes the state of what is being observed.  Outcomes can be predicted according to governing probabilities, but the actual outcome cannot be known in advance.[4]

This was something Einstein could not live with.  Einstein, as a determinist, felt that the world is a structured and rigid web where effects follows cause and all things should be predictable, given the right information.  Einstein acknowledged that quantum theory works but he did not like the philosophy behind it.  If whether or not, for example, Niels Bohr, Einstein’s quantum physics counterpart, were to throw a book across the room Einstein would be able to predict the outcome of Bohr’s “choice.” Einstein would of course say that choice is the wrong word to use; rather, the brain is a complex machine with cogs whirring round to produce a predictable action.  The basis of Einstein’s view was a philosophical conviction that the world did not include random events:  an objection summed up in Einstein’s widely quoted saying, “God does not play dice.”[5]  Bohr is reported to have responded to Einstein with the witty reply, “Don’t tell God what to do.”

Strict [or hard] determinism may be the only way to avoid the implication from quantum mechanics and experiments such as the delayed choice experiment.[6]  This experiment suggests that quantum communications occur instantaneously across any distance, or even travel backwards in time.[7]  The determinist is not yet defeated, quantum mechanics comes with a state of collapse and that seems to be linked to measurement.  Whatever measurements are, they are very specific situations and probably linked to what happens when a particle bumps into a measuring device.[8]

Einstein played a prominent role in the early development of quantum mechanics, particular in his philosophical approach to it.  How one interprets quantum mechanics will shape the answer to the question of determinism and free will.  Empirical testing does not seem to be enough to provide a satisfactory answer; rather, it how the data is interpreted.  Einstein’s approach to the rejection of genuine random events has been an influence of the contemporary debate.  It has been argued that Einstein’s determinism is correct, but it may be a mistake for him to base it on random events.  Randomness is not sufficient for determinism to be true; a lack of causality would be sufficient.  Even with the delayed choice experiment there seems to be a lack of causality, if anything it would be backwards causality.  The free will proponent must be careful not to appeal to any ignorance for a lack of explanation of such quantum events.  Einstein’s reason for determinism (randomness) does nothing to advance his case.  If anything, quantum experiments such as the delayed choice experiment only show that there is randomness in the world, not that there is purposeful, free agency.  All quantum mechanics entails is that there are random events in the brain (or whatever) that yield unpredictable behavior, which the agent is not responsible.[9]  Thus, it seems to be the case that Einstein’s philosophy of determinism has persevered.[10]


[1] Kenneth William Ford, The Quantum World: Quantum Physics for Everyone (Cambridge, MA: Harvard University Press, 2004), 117.

[2] At this time there are at least ten regularly cited interpretations of quantum physics varying in interpretation of wave collapse, determinacy/indeterminacy, superpositions, and Schrödinger’s equations.

[3]  The equation: (change in x multiplied by the change in px is greater than or equal to half of Planck’s constant). For a given state, the smaller the range of probable x values involved in a position expansion, the larger the range of probable px values involved in a momentum expansion, and vice versa.  The key to the expression is the greater than or equal to because it places a limit on how precise the two measurements can be.  The principle is relating and for the same state ( signifies change, h, h-bar, is the Planck constant).  Heisenberg’s target was causality. The Copenhagen interpretation adopted this principle.  Jonathan Allday, Quantum Reality: Theory and Philosophy (Boca Raton, FL: CRC Press, 2009), 247-248.

[4] Jonathan Allday, Quantum Reality: Theory and Philosophy (Boca Raton, FL: CRC Press, 2009), 100-101.

[5] Allday, 101.

[6] If photons are fired through the experiment one at a time (firing photons at a wall with two holes and a photon detector on the other side of the holes), they will build up an interference patter on the other side, as if they had gone through both holes at once and interfered with themselves.  If the experiment is set up so that detectors monitor which hole the photo goes through, the photon is indeed observed to be going through only one hole, and there is no interference pattern.  If a detector is set up not at the holes but intermediate between the two holes and the back wall detector screen then it may be possible to see which route a particular photon took after it had passed the two holes before it arrived at the screen.  Quantum theory says that if we choose to turn this new detector off and not look at the photons, they will form an interference pattern.  But if we look at the photons to see which hole they went through, even if we look after they have gone through the hole, there will be no interference pattern.  The delayed choice comes into the story because we can make the decision whether or not too look at the photon after the photon has already passed through the hole[s].  The decision made seems to determine how the photon behaved at the time it was passing though the hole a tiny fraction of a second in the past.  It seems as though the photons have some precognition about how the set-up of the experiment will be before it sets out on its journey.  This has also provided credence to the metaphysical concept of backwards causation.  John R. Gribbin, Mary Gribbin, and Jonathan Gribbin (Q Is for Quantum: Particle Physics from A-Z. London: Weidenfeld & Nicolson, 1998), 102-103.

[7] This is most notably accepted by the transactional interpretation of quantum mechanics. Gribbin, 104.

[8] Allday, 102.

[9] Predictability may be equivalent to randomness, not a lack of causality.  Louis Pojman, Philosophy: The Pursuit of Wisdom (Boston, MA: Wadsworth, 2006), 229-230.

[10] Recalling Einstein’s epistemic method, he based all of his philosophy and work on the ontological status of the universe.  He did not seem to indicate an immateriality to the mind.  Einstein’s influence is limited only to the physical aspect for the substance dualist.  Here is where the substance dualist and the scientific theologian must resume the dialogue.

August 10th, 2011

Einstein, The Big Bang, and Natural Theology

by Max Andrews

Einstein’s General Theory of Relativity (GTR) had predicted that the universe was either expanding or contracting.  Einstein found the notion of a beginning to the universe so distasteful that he introduced a “fudge factor” to his field equation to keep a Steady State universe, an eternal equilibrium.[1]  Einstein introduced a term called the cosmological constant.  The cosmological constant was a force so weak, which factored into the geometric curvature of space, that it would make no difference on an eternal universe.

In the 1920’s Edwin Hubble was studying the Andromeda nebula.  At least since the time of Kant scientists wondered what these distant enormous objects were (galaxies).  Kant conjectured that they might be island universes in their own right.[2]  With further study, Hubble noticed that these galaxies had a red shift; the galaxies were appearing redder than they should have and Hubble postulated that these galaxies were moving away from one another.  What was being observed was the same thing that the Doppler effect has on sound.  The trajectory of an object has an effect on the wavelength of the sound, or in this case, light.

As a result of Hubble’s discovery and Einstein’s own equations the Russian mathematician Alexander Friedman and the Belgian priest and physicist Georges Édouard Lemaître suggested that the universe had a finite past and was not static and eternal.  There was now a problem with the cosmological constant; it cannot simply be deleted from Einstein’s equations. The cosmological constant could balance the equation from describing the geometric curvature (left hand side of the equation) to describing the energy momentum (right hand side of the equation).   If this expansion is extrapolated the equations of motion then (and even now) can only go but so far—until the universe comes to a singularity. With reluctance Einstein conceded the steady state model in the late 1920’s, though many scientists would not accept the implications of an expanding universe (its finitude).  One critic, Fred Hoyle, dubbed such an event the “Big Bang” in mockery and the name stuck.[3]

Einstein’s GTR [and aspects of STR] has made incredible contributions to natural theology.[4]  Given the fixed speed of light, that nothing can travel faster than light, and the billions of light-years separation between the earth and other stars, it follows that the universe is billions of years old.[5]  This has created a problem for young-earth creationists.[6] Current estimations for the age of the universe have been set at 13.73±2 billion years old.  Young-earth creationists have adopted three main approaches:  (1) embrace a fictitious history of the universe in the spirit of Philip Gosse’s 1857 work Omphalos; (2) view the speed of light as having decayed over time; and/or (3) interpret Einstein’s GTR so that during an “ordinary day as measured on earth, billions of years worth of physical processes take place in the distant cosmos.”[7]

Regarding a fictitious history of the universe, the argument states that all present light, which appears to be billions of light years away, was created in transit with an appearance of age.  So, when supernovae exploding in a galaxy millions or billions of light years away, the young-earth creationist [advocate of a fictitious history] must adopt the approach that no supernovae ever exploded.[8]  Einstein and the scientific theologian’s epistemic method reject such an interpretation.  Einstein’s method of inquiry based the natural order as having an ontological status of genuine reality and the discoveries are made a posteriori; no such method of inquiry is tenable under a fictitious history.  Einstein’s epistemology has influenced Big Bang theists and scientific theologians regarding GTR and the objectivity of the natural order.  It appears, objectively, that the universe really is billions of years old.

The second argument was a denial that the speed of light has been a constant [approximately] 300,000 km/s.  As previously discussed, Einstein’s E=mc2 states that energy is proportional to the mass of an object multiplied by the speed of light squared.  If c decays then that would imply that there has been a change in the quantity of energy in the universe.  This creates a problem for thermodynamics.  Thermodynamics would not be the only problem; many other constants would need to change as well to preserve the stability of a life-permitting cosmos such as Planck’s constant h (h-bar).  Suddenly the objection is not only with c because that would in turn change all of physics.[9]  All of this would be done to circumvent an old universe suggested by a constant speed of light.[10]  Before Einstein’s relativity theories, this would not have been a problem for the young-earth creationist.

The third foremost-misconstrued aspect of Einstein’s equations by natural theologians has been to misinterpret GTR and time dilation.  The mathematics of this theory shows that while God makes the universe in six days in the earth’s reference frame (“Earth Standard Time”), the light has ample time in the extra-terrestrial reference frame to travel the required distances.[11]  The problem with this theory is that there are mathematical errors in its use of Einstein’s GTR.

One misunderstanding is the theory’s use of the Cosmological Principle.  It wrongly assumes that the long-time-scale implications of Big Bang cosmology are crucially dependent on the global validity of the principle and that the relaxation of this assumption, through the introduction of a boundary to the matter of the universe, produces dramatic differences in the gravitational properties of the universe.[12]  A second misunderstanding is the nature of time.  The theory wrongly affirms that the physical clock synchronization properties, which occur in the standard Big Bang model are due to the boundary conditions implied by the Cosmological Principle and that modification of these boundary conditions can change the way physical clocks behave.  Clocks in either our bounded or unbounded universe will behave exactly the same way whether on earth or at a distant galaxy provided there are identical interior matter distributions.[13] The third misunderstanding to be discussed is how GTR relates to event horizons (the point where escaping a mass’s gravity becomes impossible).  The theory wrongly affirms that observers who pass through event horizons observe dramatic changes in the rate of time passage in distant parts of the universe when it is the case that no such changes occur.[14]  Einstein’s impact on young-earth creationism has been profound and, arguably, has overthrown the tenability of young-earth creationism altogether.[15]

Einstein’s impact on natural theology has not been completely negative, as in the case for young-earth creationists, but for scientific theologians [and old-earth creationists] he has been a catalyst for epistemic and religious advances.  It is important to understand that as a GTR-based theory, the model does not describe the expansion of the material content of the universe into preexisting, Newtonian space, but rather the expansion of space itself.  The standard Big Bang model, as the Friedman-Lemaître model came to be called, thus described a universe that is not eternal in the past, but which came into being a g finite time ago.  Moreover, the origin it posits is an absolute origin ex nihilo.[16]  Christian theologians and philosophers already had arguments for a beginning of the universe based on necessity, contingency, and the concept of an actual infinite, but Einstein’s equations, which led the Standard Model, gave a mathematical and physical description of the universe that supported the Christian doctrine of creation.  The metaphysical concept of creatio ex nihilo now had empirical evidence.

In the 1960’s there was a dramatic increase in a series of dialogue on the relationship between science and religion.[17]  Natural theology [by the tasks of primarily scientists and philosophers] has sought to demonstrate that God is a necessary element in any comprehensive explanation of the universe is a long tradition, one that the Darwinian crusade sought to eliminate.  It might be legitimate to say that this renewed relationship between science and religion is a return to normal if Einstein was right when he said that “science without religion is lame. Religion without science is blind.”[18]


            [1] Guillermo Gonzalez and Jay Wesley Richards. The Privileged Planet: How Our Place in the Cosmos Is Designed for Discovery (Washington, DC: Regnery, 2004), 171.

            [2] Gonzalez and Richards, 169.

            [3] Gonzalez and Richards, 171.

            [4] Natural theology supposes that the belief in God must rest upon an evidential basis.  Belief in God is thus not a properly basic belief.  Through the development of Einstein’s work, natural theology was undergoing barrage of attack from theologians such as Karl Barth.  Barth’s polemic against natural theology can be seen as a principled attempt to safeguard the integrity of divine revelation against human attempts to construct their own notions of God, or undermine the necessity of revelation. Alister E. McGrath, The Science of God: An Introduction to Scientific Theology (Grand Rapids, MI: Eerdmans, 2004), 81-82.

            [5] It is worth noting that space itself can travel faster than the speed of light, Einstein’s STR permits this.  It is expected that space begin to exceed this cosmic speed limit relatively soon.  William Dembski, The End of Christianity (Nashville, TN: B&H, 2009), 65.

            [6] Young-earth creationists have an epistemic method that begins with the Bible and shapes the rest of nature and science according to that specific interpretation rendered.  Their conclusion is that the six days of creation are a literal 24-hour day period and the universe is roughly six to ten thousand years old.

            [7] These are the three primary approaches as they relate to Einstein’s work.  Young-earth creationists have certainly developed scores of other arguments, but these are the most relevant and most cited.  D. Russell Humphreys, Starlight and Time: Solving the Puzzle of Distant Starlight in a Young Universe (Green Forest, AR: Master, 1994), 37 quoted in Dembski, 65.

            [8] Dembski, 66-67.

            [9] Dembski, 67-68.

            [10] There are models consistent with a 13.7 billion year old universe that suggests a change in the speed of light.  Recent varying-speed-of-light (VSL) theories have been suggested as a possible alternative to cosmic inflation for solving the horizon problem, the problem of causality over long distances in initial inflation, suggesting that the speed of light was once much greater.  This is not a popular view since it is difficult to construct explicit models permitting such a suitable variation.  Other constants have been suggested to change (a theory of varying fundamental constants) in part due to superstring theory and eternal inflation.  Even so with these theories and cosmic models, there are still more-fundamental (in contrast to varying) constants in the parent universes (preceding universes in the multiverse models).  Even with a theory of varying fundamental constants Einstein’s equations [of STR] still stand in such models. Andrew R. Liddle, and Jon Loveday, The Oxford Companion to Cosmology (Oxford:  Oxford University Press, 2009), 316.

            [11] Humphreys, 13.

            [12] Samuel R. Conner and Don N. Page, “Starlight and time is the Big Bang,” CEN Technical Journal 12 no. 2 (1998): 174.

            [13] Ibid.

            [14] Ibid.

            [15] In Conner and Page’s response to young-earth creationism’s cosmology they assume five mathematical and methodological points.  (1) GTR is an accurate description of gravity.  (2) Gravity is the most important force acting over cosmologically large distances, so that the conventional application of GTR to cosmology is valid.  (3) The fundamental parameters of nature, such as the gravitational constant G and the speed of light c, are invariant over the observable history of the universe.  (4) The visible region of the universe is approximately homogenous and isotropic on large distance scales.  Lastly, (5) the events which we witness by the light of distant galaxies and quasi-stellar objects are real events and not appearances impressed onto the universe by the intention of the Creator.  Ibid, 175.  The first two assumptions directly reinforce Einstein’s GTR equations.  The third assumption, as previously discussed, relates to Einstein’s STR equations.  The fourth assumption relates to the balancing of Einstein’s field equations and its adjustment after Hubble’s discovery of expansion.  The final assumption relates to Einstein’s epistemic method of reality having real ontological value in an epistemic inquiry.

            [16] Paul Copan and William Lane Craig, Creation Out of Nothing: A Biblical, Philosophical, and Scientific Exploration (Leicester, England: Apollos, 2004), 222-223.

            [17] These efforts were predominately made by scientists and not theologians.  Such landmark works were Ian Barbour’s Issues in Science and Religion (1966) and later Paul Davies’ God and the New Physics (1983). Rodney Stark, For the Glory of God: How Monotheism Led to Reformations, Science, Witch-Hunts, and the End of Slavery (Princeton, NJ: Princeton University Press, 2003), 197.

            [18] Albert Einstein, Ideas and Opinions, Trans. and rev. Sonja Bargmann (New York: Three Rivers, 1982), 46. Stark, 197.