In 1956 Hugh Everett III published his Ph.D. dissertation titled “The Theory of the Universal Wave Function.” In this paper Everett argued for the relative state formulation of quantum theory and a quantum philosophy, which denied wave collapse. Initially, this interpretation was highly criticized by the physics community and when Everett visited Niels Bohr in Copenhagen in 1959 Bohr was unimpressed with Everett’s most recent development (439). In 1957 Everett coined his theory as the Many Worlds Interpretation (MWI) of quantum mechanics. In an attempt to circumvent the problem of defining the mechanism for the state of collapse Everett suggested that all orthogonal relative states are equally valid ontologically. An orthogonal state is one that is mutually exclusive. A system cannot be in two orthogonal states at the same time. As a result of the measurement interaction, the states of the observer have evolved into exclusive states precisely linked to the results of the measurement. At the end of the measurement process the state of the observer is the sum of eigenstate—or a combination of the sums of eigenstates, one sum for each possible value of the eigenvalue. Each sum is the relative state of the observer given the value of the eigenvalue (442-43). What this means is that all-possible states are true and exist simultaneously.

Everett left the field of pure physics and went on to work for the Department of Defense until is untimely death in 1982. Since his seminal work, many have had their reserves due to the mere weirdness. B.S. DeWitt, whose work was critical for Everett, stated,

[I] still recall vividly the shock I experienced on first encountering this multiworld concept. The idea of slightly imperfect copies of oneself all constantly splitting into further copies, which ultimately become unrecognizable, is not easy to reconcile with common sense. Here is schizophrenia with a vengeance.

The argument:

- A subjective interpretation for quantum physics is not preferable.
- An objective interpretation is preferable.
- In order to accomplish 2 there must be a universal wave function.
- The universal wave function must collapse.
- The universal wave function does not need to collapse given decoherence.
- Decoherence mimics collapse.
- Decoherence is what limits ourselves from experiences of other selves.
- Therefore, the universe has one wave function and the collapse is mimicked by decoherence, which then entails many worlds.

I don’t see any problem with the argument’s logic. My problem, which may not be of any real concern, is an aesthetic problem. At this point, the entire world because it is weird. I understand that science cannot have a weird objection but it seems to be a closed case. Also, due to the density operator it becomes problematic in the preferred basis discussion (456-57). Know at what point the next world[s] branch becomes problematic.

Jonathan Allday, *Quantum Reality: Theory and Philosophy* (Boca Raton, FL: Taylor & Francis, 2009), 435-460