In 1956 Hugh Everett III published his Ph.D. dissertation titled “The Theory of the Universal Wave Function.” In this paper Everett argued for the relative state formulation of quantum theory and a quantum philosophy, which denied wave collapse. Initially, this interpretation was highly criticized by the physics community, and when Everett visited Niels Bohr in Copenhagen in 1959 Bohr was unimpressed with Everett’s most recent development [1]. In 1957 Everett coined his theory as the Many Worlds Interpretation (MWI) of quantum mechanics. In an attempt to circumvent the problem of defining the mechanism for the state of collapse Everett suggested that all orthogonal relative states are equally valid ontologically. An orthogonal state is one that is mutually exclusive. A system cannot be in two orthogonal states at the same time. As a result of the measurement interaction, the states of the observer have evolved into exclusive states precisely linked to the results of the measurement. At the end of the measurement process the state of the observer is the sum of eigenstate—or a combination of the sums of eigenstates, one sum for each possible value of the eigenvalue. Each sum is the relative state of the observer given the value of the eigenvalue [2]. What this means is that all-possible states are true and exist simultaneously.